
Lessons from a plugin
developer
How to extend Unreal when you are not Epic

Game

PluginsEngine

Problem

Game

PluginsEngine

Problem

Epic can edit Engine and Plugins

Game

PluginsEngine

Problem

Epic can edit Engine and Plugins

Games can edit Engine, Plugins and Game

Game

PluginsEngine

Problem

Epic can edit Engine and Plugins

Games can edit Engine, Plugins and Game

Plugins can edit … Plugins

Extending Unreal
without changing the

engine

Slides are available online

Before we start

QR code will be displayed at the end

Who am I?

Before we start

Victor Careil

Created Voxel Plugin in 2017

Voxel Plugin

Before we start

Volumetric landscape replacement with full
runtime support

Voxel Plugin 1 released in 2018

3 people full time on Voxel Plugin 2 since
2021

Released planned later this year, already
available in beta

Non-destructive edits

Runtime Sculpting

Fully Volumetric

Runtime Nanite

Nanite Tessellation

Runtime Lumen

Custom Graphs

Full PCG support

Indirect Materials

All of this is done
without changing the

engine

Agenda
● Customizing editor UI

● Speeding up collision cooking

● Hacking the Nanite visibility buffer

Customizing editor UI

Property metadata
Easiest way to customize a property

Most commonly used:
● EditCondition

● InlineEditConditionToggle
● EditConditionHides
● UIMin/Max, ClampMin/Max
● DisplayName

Tip 1

unreal-garden.com

Property customization
For advanced changes to property UI

IPropertyTypeCustomization:
● For structs

● Usually to customize the value UI

IDetailCustomization:
● For objects
● Usually to add buttons, add/remove

properties etc

Tip 2

Example

Randomize on click

Example

To customize the property header

To customize the property children

Example

Get a handle to the Seed string

(but typesafe)

Example

Customize the name widget Create a name widget using the property name

Example

Customize the value widget

Example

Make the text widget as wide as possible

Make a new horizontal layout

Create a value widget for our Seed string property

Make the dice button as narrow as possible

Force the button size

Randomize on click

Example
We have a customization, we now need to register it

What we do at Voxel Plugin:

Custom code, will submit a pull request soon

Property customization
Takeaways

Use property metadata if you can

unreal-garden.com is awesome

Customizations are easy to make and can
greatly improve workflows

Widget reflector

Great tool to debug Slate widgets

Ctrl Shift W in editor

WidgetReflector in console in packaged games

Tip 3

Extending editor menus

Most editor menus can be extended

Makes it easy to add new buttons

Can greatly improve workflows & make a
tool feel native

Tip 4

Extending editor menus
How to find which menu to extend?

Tooltips!

If you use Visual Studio: Entrian Source Search is great

Extending editor menus

Extending editor menus
ToolMenus.Edit 1

Sending notifications

Great way to send non-blocking messages

For buttons: make sure VisibleInState
matches the actual state of the notification!

Tip 5

Custom thumbnails

Critical to navigate large number of assets

Many examples in engine: eg
UStaticMeshThumbnailRenderer

Try using TSharedPtr or TUniquePtr instead
of a manual delete (don’t follow the engine
patterns)

Tip 6

Custom toolkits

Custom UI when you open a custom asset

Engine framework is somewhat complex, so
we made our own open-source wrapper for it

Can create a new toolkit in 50 lines

https://github.com/VoxelPlugin/VoxelCore#custom-toolkit

Tip 7

Custom graphs

Making domain-specific graphs can be of
great help

Plenty of examples on GitHub

https://github.com/MothCocoon/FlowGraph

Tip 8

https://github.com/jinyuliao/GenericGraph

Fixing linking errors

In editor, modules are compiled as DLLs

Symbols from other modules need to be
exported!

This is not the case in packaged games
(monolithic builds): single exe, no DLLs

Tip 9

Fixing linking errors

✅ Exported

✅ Inline

❌ Not exported!

Avoid duplicate symbols in packaged

Should match engine code perfectly, only used in editor

(as long as code doesn’t call un-exported functions)

(make sure Engine is in your Build.cs)

Accessing private members

Solution 1: we can be friend (rare)

Solution 2: #define private public
Can create linking errors with MSVC

Solution 3: C++ template tricks

Tip 10

Explicit template specialization arguments can
bypass private restrictions

Doesn’t work for constructors

Accessing private members

https://github.com/VoxelPlugin/VoxelCore/blob/master/Source/VoxelCore/Public/VoxelMinimal/VoxelMacros.h#L1244

Customizing editor UI

You can customize pretty much every part
of the editor UI

If you don’t know where to start:

1. Look for an existing engine feature
doing what you want to do

2. Use the Widget Reflector or tooltip
search to find the relevant code

Takeaways

Speeding up collision cooking

Problem

We cook collision for a lot of chunks on-
the-fly, at runtime

Collision cooking can be slow for runtime
use

How to make it faster without changing the
engine?

Problem

We want to use our own builder

But other constructors are private

FTriangleMeshImplicitObject has friends

Pretend being one of them?

Problem

Dummy class, never instantiated

“Fake” specialization

We are a friend of FTriangleMeshImplicitObject

We can now access its private properties and do custom cooking!

Speeding up collision cooking

5.5x faster!

Code is open-source

github.com/VoxelPlugin/VoxelCore/blob/master/Source/VoxelCore/Public/VoxelChaosTriangleMeshCooker.h

Hacking the Nanite visibility buffer

What we want

Different materials Smooth blends

Tessellated plane

Overview

Hooking into the
Render Pipeline

Making a
Compute Shader

Extending
Engine Shaders

Accessing
Render Textures

What is
Nanite

Adding
Smooth Blends

Making a
Mega Material

What is Nanite

Nanite is a virtualized geometry renderer with
automatic LODs

Renders into a visibility buffer which is then
shaded using compute shaders

Step 1

How Nanite renders a frame

Virtualized
Geometry

Visibility Buffer
Shading Mask

GBuffer
Rasterization Shading

Depth

Triangle ID

Shading Bin

Color

Normal

Roughness

Idea

Visibility Buffer
Shading Mask

GBuffer

Depth

Triangle ID

Shading Bin

Idea

Visibility Buffer
Shading Mask

GBuffer

Depth

Triangle ID

Shading Bin

Material
Selection Pass

Change
Shading Bins

Where to hook?

Scene View Extensions: easy way to hook
into the rendering pipeline

Can hook before and after BasePass &
PostProcess

Here we hook into PreRenderBasePass

Step 2

Base Pass Post Process

Adding a Compute Shader

Unreal has 3 main shader types:

FGlobalShader: pure HLSL shader

FMaterialShader: HLSL shader merged with a
material graph

FMeshMaterialShader: material shader with a
vertex factory

Step 3 FAmbientOcclusionCS
FBloomDownsampleKernelCS
FScreenSpaceReflectionsCS

FPostProcessMaterialShader
FDeferredDecalPS
FSlateMaterialShaderPS

FGlobalShader

FMaterialShader

FMeshMaterialShader
TBasePassCS
FVelocityPS
FLumenCardPS

Adding a Compute Shader
We want to select materials based on displacement

Displacement is set in artist-authored materials

We need to make a Material Shader

Material
Shader

MaterialSelection.usf

/Generated/Material.ush

/Generated/Material.ush

/Generated/Material.ush

#include /Generated/Material.ush

MaterialSelection.usf for M_Gravel

MaterialSelection.usf for M_SandyGravel

MaterialSelection.usf for M_GravelRock

Making a Mega Material

We have many different materials

We need to generate one compute shader

Our solution: generate a Mega Material

Proper branching between materials

Used for displacement, Lumen, RVTs,
mobile…

Step 4

Extending Engine Shaders

Plugins cannot edit engine source as engine
C++ cannot be recompiled

But: any shader can be recompiled anytime,
including engine ones

Plugins could edit engine shaders!

Step 5

Shader Hooks

GUID & diffing based

Editor UI to apply or remove Shader Hooks

We can edit any engine shader!

github.com/VoxelPlugin/VoxelCore/blob/master/Source/VoxelCore/Public/VoxelShaderHook.h

Getting the VisBuffer

The Visibility Buffer is not exposed!

Game Over? Usually, yes

But FRDGBuilder stores a list of all the render
textures, along with their debug name!

Step 6

What we get

What we get

What we get

What we get

Smooth blends

Use dithering to randomly switch between
materials

Weighted random selection: weight is set
by the height blend logic

We still render only one material per pixel

Step 7

Hacking the Visibility Buffer

You can easily make material shaders in a
plugin, giving artists full control

You can hook into many parts of the
render pipeline

You can access most render textures with
FVoxelUtilities::FindTexture

Takeaways

Open-source sample

github.com/Phyronnaz/MaterialShaderExample

http://github.com/Phyronnaz/MaterialShaderExample
http://github.com/Phyronnaz/MaterialShaderExample
http://github.com/Phyronnaz/MaterialShaderExample
http://github.com/Phyronnaz/MaterialShaderExample

Conclusion

Conclusion
There’s many ways to customize the
editor UI

You can access most private variables
with a few tricks

Calling un-exported functions is often
doable (just need to copy some code)

You can hook in most parts of the
rendering pipeline

Hacks are usually fine – just wrap them in
helper functions

Voxel Core

Open-source (MIT) part of Voxel Plugin

Highly optimized containers

Includes a bunch of editor helpers for
toolkits, details etc

Thank you!
Slides are on victorcareil.com

More about the plugin: voxelplugin.com

We have a Discord: discord.voxelplugin.com

Voxel Core: github.com/VoxelPlugin/VoxelCore

@phyronnaz on twitter/bsky/discord

